
Dynamic Programming by Richard Bellman

Jill-Jênn Vie

Sep 6, 2024



First example: Fibonacci numbers
Naive
def fibo(n):

if n <= 1:
return n

else:
return fibo(n - 1) + fibo(n - 2)

Memoization
from functools import cache

@cache
def fibo(n):

if n <= 1:
return n

else:
return fibo(n - 1) + fibo(n - 2)

Dynamic programming
def fibo2(n):

f = [0] * (n + 1)
f[1] = 1
for i in range(2, n + 1):

f[i] = f[i - 2] + f[i - 1]
return f[n]



First example: Fibonacci numbers
Naive
def fibo(n):

if n <= 1:
return n

else:
return fibo(n - 1) + fibo(n - 2)

Memoization
from functools import cache

@cache
def fibo(n):

if n <= 1:
return n

else:
return fibo(n - 1) + fibo(n - 2)

Dynamic programming
def fibo2(n):

f = [0] * (n + 1)
f[1] = 1
for i in range(2, n + 1):

f[i] = f[i - 2] + f[i - 1]
return f[n]



First example: Fibonacci numbers
Naive
def fibo(n):

if n <= 1:
return n

else:
return fibo(n - 1) + fibo(n - 2)

Memoization
from functools import cache

@cache
def fibo(n):

if n <= 1:
return n

else:
return fibo(n - 1) + fibo(n - 2)

Dynamic programming
def fibo2(n):

f = [0] * (n + 1)
f[1] = 1
for i in range(2, n + 1):

f[i] = f[i - 2] + f[i - 1]
return f[n]



Knapsack
We are given n objects of sizes c1, . . . , cn and values v1, . . . , vn. Given a knapsack of
capacity C , what is the highest value one can obtain using objects of max total size C?

States: (i first objects, capacity c)

Let us call maxValue[i ][c] the highest value one can obtain with first i ∈ [1, n] objects
and capacity c ∈ [0, C ]. First, initialize. Then:

For the ith object:

▶ Either we take it, and go back to (i − 1, c − ci state) if exists
vi + maxValue[i − 1][c − ci ]

▶ Or we don’t: go to (i − 1, c) state
maxValue[i − 1][c]

Variants (besides coin change)
▶ Taking several times the same object instead of once
▶ Does this work with negative values? Negative capacities?



Knapsack
We are given n objects of sizes c1, . . . , cn and values v1, . . . , vn. Given a knapsack of
capacity C , what is the highest value one can obtain using objects of max total size C?

States: (i first objects, capacity c)

Let us call maxValue[i ][c] the highest value one can obtain with first i ∈ [1, n] objects
and capacity c ∈ [0, C ]. First, initialize. Then:

For the ith object:

▶ Either we take it, and go back to (i − 1, c − ci state) if exists
vi + maxValue[i − 1][c − ci ]

▶ Or we don’t: go to (i − 1, c) state
maxValue[i − 1][c]

Variants (besides coin change)
▶ Taking several times the same object instead of once
▶ Does this work with negative values? Negative capacities?



Knapsack
We are given n objects of sizes c1, . . . , cn and values v1, . . . , vn. Given a knapsack of
capacity C , what is the highest value one can obtain using objects of max total size C?

States: (i first objects, capacity c)

Let us call maxValue[i ][c] the highest value one can obtain with first i ∈ [1, n] objects
and capacity c ∈ [0, C ]. First, initialize. Then:

For the ith object:

▶ Either we take it, and go back to (i − 1, c − ci state) if exists
vi + maxValue[i − 1][c − ci ]

▶ Or we don’t: go to (i − 1, c) state
maxValue[i − 1][c]

Variants (besides coin change)
▶ Taking several times the same object instead of once
▶ Does this work with negative values? Negative capacities?



DP method
1. Try to identify states.
2. Find the recurrence relation.
3. If memoization: use std::map. If DP: initialize well.

Application to shortest paths
▶ Bellman-Ford: dk [v ] = shortest length from source to v using at most k edges

d(v) = min
u

d(u) + wuv

▶ Floyd-Warshall: dk [u][v ] = shortest length between u and v using only nodes < k

d(u, v) = min
w

d(u, w) + d(w , v)

Problems last week
▶ Longest path in a DAG
▶ Ricochet Robots
▶ Ingredients



Gold mine problem (Bellman, 1952)

Two gold mines, Anaconda (amount x) and Bonanza (amount y).

▶ Anaconda: probability p1 to collect r1x 1 − p1 to break the machine forever
▶ Bonanza: probability q1 to collect r2y 1 − q1 to break the machine forever

Parameters of the problem: p1, q1, r1, r2 ∈ [0, 1], x , y ∈ R+.

What is the optimal action, that maximizes the amount of extracted gold?

Let f (x , y) be the maximum expected gold extracted.



Gold mine problem (Bellman, 1952)

Two gold mines, Anaconda (amount x) and Bonanza (amount y).

▶ Anaconda: probability p1 to collect r1x 1 − p1 to break the machine forever
▶ Bonanza: probability q1 to collect r2y 1 − q1 to break the machine forever

Parameters of the problem: p1, q1, r1, r2 ∈ [0, 1], x , y ∈ R+.

What is the optimal action, that maximizes the amount of extracted gold?

Let f (x , y) be the maximum expected gold extracted.



Solution to the gold mine problem



Plate-breaking problem

We have k plates and a building of n floors.

To identify the critical floor (i.e. highest floor where the plate does not break), we throw
plates. If the plate breaks, we cannot reuse it; otherwise we can.

We want to find the critical floor in a minimum number of moves in the worst case.

First: find a strategy for k = 1 or 2 or k = ∞. Then, for any k.



Dynamic programming led to reinforcement learning



Gridworld



More optimizations



Richard Bellman
(1920–1984)

▶ Man of the century
▶ Invented dynamic

programming (1952)
before programming
was invented (1953)

Bellman’s Principle of Optimality

An optimal policy has the property that whatever the
initial state and initial decision are, the remaining
decisions must constitute an optimal policy with
regard to the state resulting from the first decision.


