Sequences: seq2seq

Jill-Jênn Vie

Oct 24, 2025

seq2seq (Cho et al. 2014; Sutskever et al. 2014)

Input $x_{1:n}$ Output $y_{1:m}$

$$\begin{cases} h_{1:n} = encoder(x_{1:n}) \in \mathbb{R}^{n \times d} \\ y_{1:m} = decoder(h_{1:n}) \end{cases}$$

	encoder	decoder		citations
2014	lstm	lstm	hochreiter 1997	135143 + 491
Still 2014	gru	attention & gru	bahdanau 2014	40780 + 63
2017	attention	attention	vaswani 2017	209004 -8902
2018 BERT	attention		devlin 2018	146686 + 604
2018 GPT		attention	radford 2018	16133 + 111

k nearest neighbors

Who saw this in high school?

Algorithm 1 k nearest neighbors among n in d dimensions

for all *i* from 1 to *n* **do**

Compute distance from x to x_i , i.e. $||x - x_i||^2$

Find k nearest neighbors of x, argmin distance Compute average of their y_i , or the majority class

- ► Complexity to find neighbors of x in X? O(nd + kn)
- For every token in the sequence: O(mnd + mkn)

k nearest neighbors

Who saw this in high school?

Algorithm 2 k nearest neighbors among n in d dimensions

for all *i* from 1 to *n* **do**

Compute similarity between x and x_i , i.e. x^Tx_i

Find k nearest neighbors of x, argmax similarity

Compute average of their y_i , or the majority class

- ightharpoonup Complexity to find neighbors of x in X? O(nd + kn)
- ▶ For every token in the sequence: O(mnd + mkn)

Variant: weighted k nearest neighbors

Similarity $w_i = \mathbf{x}_{test}^T \mathbf{x}_{train_i} / N_z$ (renormalized to sum to 1)

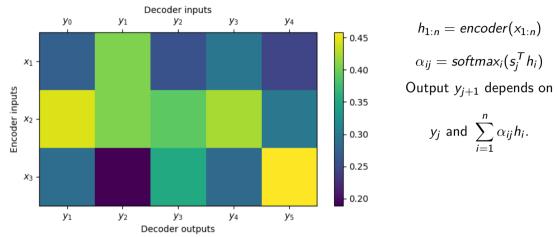
I predict for
$$\mathbf{x}_{test}$$
: $\hat{y} = \sum_{i=1}^{n} w_i y_{train_i}$

Attention is $softmax(QK^T)V$

A linear combination of values V with weights corresponding to similarity (e.g. dot product) between queries Q and keys K

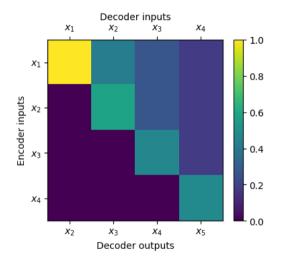
Understanding KNN is a first step to understand attention mechanism.

Attention (Bahdanau, Cho, and Bengio 2015)



Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio (2015). "Neural Machine Translation by Jointly Learning to Align and Translate". In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. URL: http://arxiv.org/abs/1409.0473

Masked self-attention (autoregressive)



$$q_{1:n}, k_{1:n}, v_{1:n} = Linear(x_{1:n})$$
 $\alpha_{ij} = softmax_i(q_j^T k_i)$
Output x_{j+1} depends on

Ashish Vaswani et al. (2017). "Attention is all you need". In: Advances in neural information processing systems 30

- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). "Neural Machine Translation by Jointly Learning to Align and Translate". In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. URL: http://arxiv.org/abs/1409.0473.
- Cho, Kyunghyun et al. (2014). "Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation". In: *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1724–1734.
- Devlin, Jacob et al. (2019). "Bert: Pre-training of deep bidirectional transformers for language understanding". In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp. 4171–4186.
- Hochreiter, Sepp and Jürgen Schmidhuber (1997). "Long short-term memory". In: Neural computation 9.8, pp. 1735–1780.
- Radford, Alec et al. (2018). "Improving language understanding by generative pre-training". In.

