
Segment trees

JJV CP Algorithms

29 septembre 2023



Structure

For a given array a

▶ Compute segment sum a[ℓ . . . r ]
▶ Update element a[i ]



Segment tree

Each node:

▶ handles segment [ℓ, r ]
▶ has one or several attributes/values (ex. min or sum of a[ℓ, r ])
▶ has children [ℓ, m] and [m + 1, r ] where m = ⌊(ℓ + r)/2⌋

Building the tree has complexity O(n)

The height is O(log n), the complexity of queries is 4 log n = O(log n)



Sum queries

Requested [ℓ, r ]

If current node is [tℓ, tr ], three cases:

▶ [ℓ, r ] = [tℓ, tr ]: return current value
▶ [ℓ, r ] ⊂ [tm, tr ]: 1 recursive call to the left
▶ Otherwise: 2 recursive calls on left and right



Update queries

Update element at position i

If current node is [tℓ, tr ]:

▶ If i ∈ [tℓ, tm]: 1 recursive call to the left
▶ If i ∈ [tm, tr ]: 1 recursive call to the right



Segment trees defined by arrays

Just like heaps

▶ Childrens of i are 2i and 2i + 1
▶ Parent of i is ⌊i/2⌋



Variants

Should wonder: what attributes at each node, how to merge children info upwards

▶ Min / Max / GCD / LCM instead of Sum: easy
▶ Max and number of occurrences of the max
▶ Count number of zeroes / finding the k-th zero
▶ Given value x find smallest i such that a[i ] ≥ x
▶ Finding subsegments of maximal sum: slightly harder



Union of rectangles

▶ https://www.spoj.com/problems/NKMARS/
▶ https://lightoj.com/problem/rectangle-union



More variants: lazy

▶ Adding x to all cells in a range [ℓ, r ]
▶ Get a[i ]

Attribute is “how much is added to this segment”.
Then we will compute the actual value of a cell only if requested, in O(log n).

▶ Assign x to all cells in a range [ℓ, r ]
▶ Get a[i ]

Or:

▶ Adding x to all cells in a range [ℓ, r ]
▶ Query for max in a range [ℓ, r ]

One can also lazy build the segment tree (grow node only if needed)



Variant: persistent

▶ What is the kth smallest element in range a[ℓ : r ]



What’s in the notebook

▶ 4.5 Binary Tree is a sum segment tree
▶ update cell
▶ query sum

▶ 4.6 Binary Tree with Lazy Propagation
▶ update cell
▶ assign range
▶ query sum

▶ 4.7 Persistent Binary Tree == 4.8 Persistent Segment Tree
▶ 4.10 Heavy-Light decomposition

▶ decomposition of trees into heavy/light paths
▶ can use segment trees for heavy paths

▶ 4.11 Range min query
▶ uses sparse table: queries O(1)

https://cp-algorithms.com/data_structures/segment_tree.html


