String Processing

Jill-Jênn Vie Halim book

October 18, 2024

Rabin-Karp: hashing

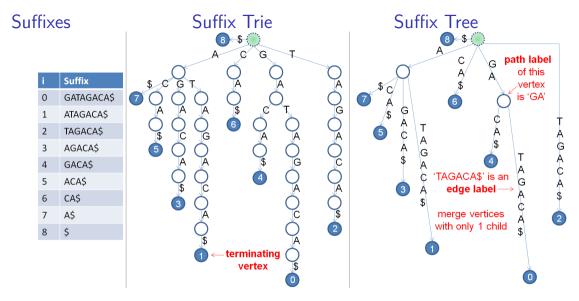
Looking for s in t

Idea

Comparing an updated rolling hash of every substring of t of size |s| with the hash of s.

$$\mathsf{hash}(x) = \sum_i x[i] A^i \pmod{P}$$

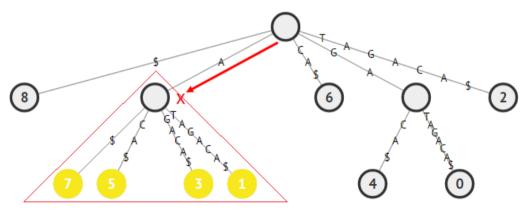
Applications


- Pattern matching
- Lexicographical smallest rotation of a string

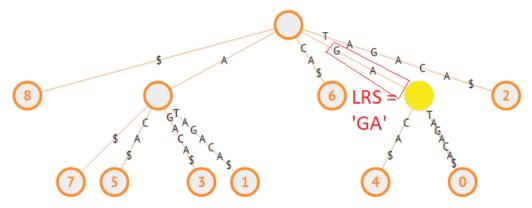
```
vector<H> getHashes(string& str, int length) {
        if (sz(str) < length) return {};</pre>
        H h = 0, pw = 1;
        rep(i,0,length)
                h = h * C + str[i], pw = pw * C;
        vector<H> ret = \{h\};
        rep(i,length,sz(str)) {
                ret.push_back(h = h * C + str[i] - pw * str[i-length]);
        3
        return ret:
}
struct HashInterval {
        vector<H> ha, pw;
        HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
                pw[0] = 1:
                rep(i,0,sz(str))
                        ha[i+1] = ha[i] * C + str[i],
                        pw[i+1] = pw[i] * C;
        }
        H hashInterval(int a, int b) { // hash [a, b)
                return ha[b] - ha[a] * pw[b - a];
        }
};
```

2D pattern matching: SWERC 2014's J: The Big Painting

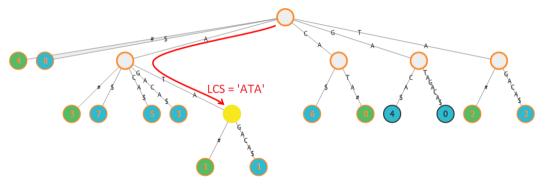
XXXXXXOXXO 0XX0**00**X00X xoox**xx**xoox xooxxxoxxo oxxoxxxxxx 0000XXXXXX XXXOXXOXXO 000x00x00x 000x00x00x XXXOXXOXXO


https://open.kattis.com/problems/bigpainting

String matching / longest repeated substring / longest common substring of multiple strings

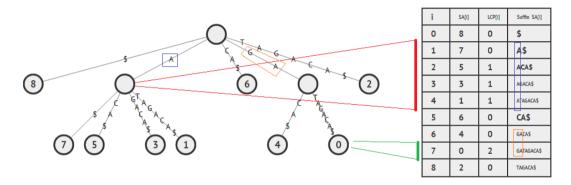

String matching

A in GATAGACA


Longest repeated substring

Longest common substring

GATAGACA and CATA: it is ATA



Suffix array

i	Suffix		i	SA[i]	Suffix
0	GATAGACA\$		0	8	\$
1	ATAGACA\$		1	7	A\$
2	TAGACA\$	Sort \rightarrow	2	5	ACA\$
3	AGACA\$		3	3	AGACA\$
4	GACA\$		4	1	ATAGACA\$
5	ACA\$		5	6	CA\$
6	CA\$		6	4	GACA\$
7	A\$		7	0	GATAGACA\$
8	\$		8	2	TAGACA\$

Naive in $O(n^2 \log n)$, divide in conquer best in practice $O(n \log n)$, best in theory O(n)

Suffix tree vs. suffix array

Longest common prefix of any two suffixes

String applications

	String Hashing	Suffix Array	Suffix Tree
Search for duplicate strings in array of strings	X	х	х
Number of distinct substrings of given string	O(n²)	O(n log n)	O(n)
Finding smallest cyclic shift	X	х	х
Finding substring in a string	X	х	х
Comparing same-length substrings a < b	X	х	х
Longest common prefix of substrings	х	х	х
Total length of all different substrings		х	х
Lexicographically k-th substring	X	Х	х
Shortest non-appearing string		х	х
Longest common substring of multiple strings	×	х	х

Knuth-Morris-Pratt

Let s a string of length n

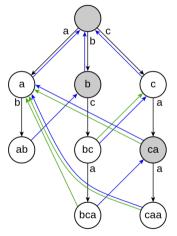
Prefix function

Array p such that p[i] is the length of the longest proper prefix of s[0..i] which is also a suffix of s[0..i].

Idea

Build p in O(n) by dyn prog

Applications


- String matching
- Know biggest p such that $s = z^p$
- Find all palindrome prefixes
- Given u, v, find whether $\exists x, y, u = xy, v = yx$

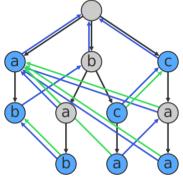
Looking for a set of patterns S

Generalization But now, how to find all occurrences of a set of patterns in a string?

Aho-Corasick

Look for all occurrences of a, ab, bc, bca, c, caa (white nodes)

Complexity


- If \sum strings is *m*, nb vertices *n*, alphabet size *k*
 - O(mk) thanks to dyn prog
 - Can be sped up $O(n \log k)$ with a segment tree

Note

- Generalization of KMP for several strings
- Notebook implementation is exactly cp-algorithms (wtf 445 pages of Stanford slides)

Blue arrows: suffix links Green arrows: terminal

Aho-Corasick

Ahocorasick.svg, CC-BY-SA 3.0, Dllu, Wikimedia Commons

Dictionnaire : a, ab, bab, bc, bca, c, caa.

- Construire un **trie** du dictionnaire (liens en noir, mots sur fond bleu)
- Ajouter des **pointeurs** (en bleu) vers le plus grand suffixe strict dans le trie
- Ajouter des **raccourcis** (en vert) pour les mots du dictionnaire
- Exemple : **abccab** donne :
 - **a** (parcours normal),
 - **ab** (parcours normal),
 - bc (suivi du pointeur bleu) puis c (clôture par le pointeur vert),
 - **c** (suivi du pointeur bleu),
 - **ca** (parcours normal) puis **a** (clôture par le pointeur vert),

12/29

• **ab** (suivi du pointeur bleu)

Problems using Aho-Corasick

- Find all strings from a given set in a text
- Finding the lexicographical smallest string of a given length that doesn't match any given strings
- Finding the shortest string containing all given strings
- Finding the lexicographical smallest string of length L containing k strings

Context-free grammar

								(S	Stmt								
	if ($\langle Expr \rangle$)	$\langle \text{Stmt} \rangle$							_				
	if ($\langle Expr \rangle$	$\langle \text{Optr} \rangle$	$\langle Expr \rangle$)		$\langle Stmt \rangle$										
	if ($\langle \mathrm{Id} \rangle$	(Optr)	$\langle Expr \rangle$)		(Stmt)										
	if (x	$\langle \text{Optr} \rangle$	$\langle Expr \rangle$)		(Stmt)										
	if (x	>	$\langle Expr \rangle$)							(St	$ $ mt \rangle				
	if (х	>	(Num))							(St	mt				
	if (x	>	9)							(St	$ mt\rangle$				
	if (x	>	9)	{	(StmtList)					F					
$\langle \text{Stmt} \rangle$	if (x	>	9)	Ĩ	(3 tn	ntList				(S	$ tmt\rangle$		-1	į.
	if (x	>	9	5	Ì			$ $ tmt \rangle					Stmt)		i	í.
	if (х	>	9	5	ì	$\langle \mathrm{Id} \rangle$	=	$\langle Expr \rangle$:				Stmt)		1	í.
$ $ mt \rangle	if (x	>	9	5	ì	x	_	$\langle Expr \rangle$	÷.				Stmt)		1	í.
	if (x	>	9	Ś	ì		- 1	(Num)	1				(tmt)		1	į.
	if (x	>	9	5	ì	x	- 1	0	÷.				Stmt		1	į.
$\langle Expr \rangle$	if (x	>	9	5	ì	x	-	0	4	$\langle \mathrm{Id} \rangle$	-	1	(Expr)		- 1	í.
	if (x	>	9	5	ì	x	_	0	÷.	y			$\langle Expr \rangle$			í.
	if (x	>	9	5	ì	x	_	õ		y	_	(Expr)	$\langle Optr \rangle$	$\langle Expr \rangle$	-1.1	Ĺ
	if (x	>	9	ŝ	ł	x	_	õ		v	_	$\langle Id \rangle$	$\langle Optr \rangle$	$\langle Expr \rangle$	14	í.
	if (x	Ś	9	ś	ł	x	_	ŏ		y V	-	<u>y</u>	$\langle Optr \rangle$	$\langle Expr \rangle$	1	l.
	if (x	5	9	Ś	}	x	_	ŏ			_		<u>(Opti)</u> +	$\langle Expr \rangle$	1	í.
	if (x	5	9	ŝ	}	x	2	0	,	У	2	У	+	$\frac{\langle LXpI \rangle}{\langle Num \rangle}$	- 1	í.
			>	9	Ś	Ì		_	0	÷	У	-	У	+	1	-11	i -
	if (х	1	Э)	í	х	-	0	;	У	-	У	+	1	ز ق	I.

Recognizing a context-free grammar in Chomsky normal form

$\mathbf{S} \longrightarrow \mathbf{NP} \ \mathbf{VP}$	7 S → NP VP VP → VP PP
$VP \longrightarrow VP PP$	$ \begin{array}{c} $
$VP \longrightarrow V NP$	$NP \rightarrow Det N$
$VP \longrightarrow eats$	$5 \qquad \qquad$
$\mathrm{PP} \longrightarrow \mathrm{P} \ \mathrm{NP}$	4 N → fork Det → a
$\mathbf{NP} \longrightarrow \mathbf{Det} \; \mathbf{N}$	3
$NP \longrightarrow she$	2
$V \longrightarrow eats$	
$P \longrightarrow with$	
$\mathbf{N} \longrightarrow \mathbf{fish}$	She eats a fish with a fork
$N \longrightarrow fork$	Complexity of CYK algorithm
$\mathrm{Det} \longrightarrow \mathrm{a}$	$O(n^3 G)$ for string of length <i>n</i> and grammar of size $ G $

String applications

	String Hashing	Suffix Array	Suffix Tree	Aho-Corasick
Search for duplicate strings in array of strings	x	х	х	
Number of distinct substrings of given string	O(n²)	O(n log n)	O(n)	
Finding smallest cyclic shift	x	х	х	
Finding substring in a string	x	х	х	x
Comparing same-length substrings a < b	x	х	х	
Longest common prefix of substrings	x	х	х	
Total length of all different substrings		х	х	
Lexicographically k-th substring	x	х	х	
Shortest non-appearing string		х	х	
Longest common substring of multiple strings	x	х	X	
Find strings S in a text				x
Finding lexicographically smallest string that doesn't contain S				X
Finding lexicographically smallest string that contains k strings from S (or all)				х