% Competitive Programming\newline ICPC SWERC Training % Jill-Jênn Vie % First class — aspectratio: 169 —
:::::::: {.columns align=center} ::: {.column width=”40%”}
swerc.eu
:::
::: {.column width=”40%”}
\centering
\vspace{5mm}
{width=70%}
:::
::::::::
Probably 3 teams per university/school.
:::::::: {.columns} ::: {.column width=”50%”}
9 10
##########
.....#...#
####.###.#
#..#.#...#
#..#.#.###
###..#.#.#
#.#.####.#
#........#
########.# ::: ::: {.column width="50%"} ## Output
##########
XXXXX#...#
####X###.#
#..#X#...#
#..#X#.###
###XX#.#X#
#X#X####X#
#XXXXXXXX#
########X# ::: ::::::::
python laby.py < laby.in > laby.out # Python
make laby
./laby < laby.in > laby.out # C++
todo = SomeDataStructure()
Put start in todo
While todo is not empty
Get node from todo
For each neighbor of node
Add neighbor to todo if not visited yet
According to the data structure, the complexity and algorithm can be different
Actually, when we mark nodes can have an impact on the complexity too
unsigned long long int (%lld)