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Optimizing Human Learning

We observe data collected by a platform (ITS, MOOC, etc.)

We can learn a generative model of the world (∼ knowledge tracing)
Then learn a policy to optimize it (e.g. this workshop)

Challenges
Representations that evolve over time
(actions from the teacher can modify the learner)
Which objective function should be optimized?
New users & items appear (cold-start)
Sequential learning requires a measure of uncertainty
High-stakes applications require interpretability
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Choosing the objective function to optimize

Maximize information → learners fail 50% of the time (good for the
assessing institution, not for the learning student)

Maximize success rate → asking too easy questions

Maximize the growth of the success rate (Clement et al. 2015)

Compromise exploration (items that we don’t know)
and exploitation (items that measure well)

Identify a gap from the learner (Teng et al. ICDM 2018)
+ assume that a item brings less learning when it was administered
before (Seznec et al. AISTATS 2019, SequeL)

Increasing number of works(hops) about reinforcement learning in
education
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Predicting student performance

Data
A population of students answering questions

Events: “Student i answered question j correctly/incorrectly”

Goal
Learn the difficulty of questions automatically from data
Measure the knowledge of students
Potentially optimize their learning

Assumption
Good model for prediction → Good adaptive policy for teaching
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Learning outcomes of this tutorial

Logistic regression is amazing
Unidimensional
Takes IRT, PFA as special cases

Factorization machines are even more amazing
Multidimensional
Take MIRT as special case

It makes sense to consider deep neural networks
What does deep knowledge tracing model exactly?
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Families of models

Factorization Machines (Rendle 2012)
Multidimensional Item Response Theory
Logistic Regression

Item Response Theory
Performance Factor Analysis

Recurrent Neural Networks
Deep Knowledge Tracing (Piech et al. 2015)

Steffen Rendle (2012). “Factorization Machines with libFM”. In:
ACM Transactions on Intelligent Systems and Technology (TIST)
3.3, 57:1–57:22. doi: 10.1145/2168752.2168771

Chris Piech et al. (2015). “Deep knowledge tracing”. In: Advances
in Neural Information Processing Systems (NIPS), pp. 505–513

https://doi.org/10.1145/2168752.2168771
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Problems

Weak generalization
Filling the blanks: some students did not attempt all questions

Strong generalization
Cold-start: some new students are not in the train set
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Dummy dataset

User 1 answered Item 1 correct
User 1 answered Item 2 incorrect
User 2 answered Item 1 incorrect
User 2 answered Item 1 correct
User 2 answered Item 2 ???

user item correct

1 1 1
1 2 0
2 1 0
2 1 1
2 2 0

dummy.csv
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Task 1: Item Response Theory

Learn abilities θi for each user i
Learn easiness ej for each item j such that:

Pr(User i Item j OK) = σ(θi + ej)
logit Pr(User i Item j OK) = θi + ej

Logistic regression
Learn w such that logit Pr(x) = ⟨w , x⟩
Usually with L2 regularization: ||w ||22 penalty ↔ Gaussian prior
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Graphically: IRT as logistic regression

Encoding of “User i answered Item j”:
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logit Pr(User i Item j OK) = ⟨w , x⟩ = θi + ej
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Encoding

python encode.py --users --items

Users Items

U0 U1 U2 I0 I1 I2
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 1 0 1 0
0 0 1 0 0 1

data/dummy/X-ui.npz

Then logistic regression can be run on the sparse features:

python lr.py data/dummy/X-ui.npz



Introduction Logistic Regression Factorization Machines Deep Learning Conclusion

Oh, there’s a problem

python encode.py --users --items

python lr.py data/dummy/X-ui.npz

Users Items

U0 U1 U2 I0 I1 I2 ypred y

User 1 Item 1 OK 0 1 0 0 1 0 0.575135 1
User 1 Item 2 NOK 0 1 0 0 0 1 0.395036 0
User 2 Item 1 NOK 0 0 1 0 1 0 0.545417 0
User 2 Item 1 OK 0 0 1 0 1 0 0.545417 1
User 2 Item 2 NOK 0 0 1 0 0 1 0.366595 0

We predict the same thing when there are several attempts.
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Count successes and failures

Keep track of what the student has done before:

user item skill correct wins fails

1 1 1 1 0 0
1 2 2 0 0 0
2 1 1 0 0 0
2 1 1 1 0 1
2 2 2 0 0 0

data/dummy/data.csv
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Task 2: Performance Factor Analysis
Wik : how many successes of user i over skill k (Fik : #failures)

Learn βk , γk , δk for each skill k such that:
logit Pr(User i Item j OK) =

∑
Skill k of Item j

βk + Wikγk + Fikδk

python encode.py --skills --wins --fails

Users Items Devices

U1 U2 U3 I1 I2 I3 I4 mobile desktop

0 1 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 1 0 1

data/dummy/X-swf.npz
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Better!

python encode.py --skills --wins --fails

python lr.py data/dummy/X-swf.npz

Skills Wins Fails

S0 S1 S2 S0 S1 S2 S0 S1 S2 ypred y

User 1 Item 1 OK 0 1 0 0 0 0 0 0 0 0.544 1
User 1 Item 2 NOK 0 0 1 0 0 0 0 0 0 0.381 0
User 2 Item 1 NOK 0 1 0 0 0 0 0 0 0 0.544 0
User 2 Item 1 OK 0 1 0 0 0 0 0 1 0 0.633 1
User 2 Item 2 NOK 0 0 1 0 0 0 0 0 0 0.381 0
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Task 3: a new model (but still logistic regression)

python encode.py --items --skills --wins --fails

python lr.py data/dummy/X-iswf.npz
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Here comes a new challenger

How to model side information in, say, recommender systems?

Logistic Regression
Learn a bias for each feature (each user, item, etc.)

Factorization Machines
Learn a bias and an embedding for each feature
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What can be done with embeddings?
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Interpreting the components
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Interpreting the components
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Graphically: logistic regression
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How to model pairwise interactions with side information?

If you know user i attempted item j on mobile (not desktop)
How to model it?

y : score of event “user i solves correctly item j”

IRT

y = θi + ej

Multidimensional IRT (similar to collaborative filtering)

y = θi + ej + ⟨vuser i , vitem j ⟩

With side information

y = θi + ej + wmobile + ⟨vuser i , vitem j ⟩ + ⟨vuser i , vmobile⟩ + ⟨vitem j , vmobile⟩
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Graphically: factorization machines
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Formally: factorization machines
Learn bias wk and embedding vk for each feature k such that:

logit p(x) = µ +
N∑

k=1
wkxk︸ ︷︷ ︸

logistic regression

+
∑

1≤k<l≤N
xkxl⟨vk , vl ⟩︸ ︷︷ ︸

pairwise interactions

Particular cases
Multidimensional item response theory: logit p = ⟨ui , vj ⟩ + ej
SPARFA: vj > 0 and vj sparse
GenMA: vj is constrained by the zeroes of a q-matrix (qij)i ,j

Andrew S Lan, Andrew E Waters, Christoph Studer, and Richard G Baraniuk
(2014). “Sparse factor analysis for learning and content analytics”. In: The
Journal of Machine Learning Research 15.1, pp. 1959–2008

Jill-Jênn Vie, Fabrice Popineau, Yolaine Bourda, and Éric Bruillard (2016).
“Adaptive Testing Using a General Diagnostic Model”. In: European Conference
on Technology Enhanced Learning. Springer, pp. 331–339
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Assistments 2009 dataset

278608 attempts of 4163 students over 196457 items on 124 skills.

Download http://jiji.cat/weasel2018/data.csv
Put it in data/assistments09

python fm.py data/assistments09/X-ui.npz
etc. or make big

AUC users + items skills + w + f items + skills + w + f

LR 0.734 (IRT) 2s 0.651 (PFA) 9s 0.737 23s
FM 0.730 2min9s 0.652 43s 0.739 2min30s

Results obtained with FM d = 20
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Benchmarks

Model Component Size AUC

Bayesian Knowledge Tracing Hidden Markov Model 2N 0.63(Corbett and Anderson 1994)

Deep Knowledge Tracing Recurrent Neural Network O(Nd + d2) 0.75(Piech et al. 2015)

Item Response Theory Logistic Regression
N 0.76(Rasch 1960) online

(Wilson et al. 2016)

Knowledge Tracing Machines Factorization Machines Nd + N 0.82

AAAI 2019 Jill-Jênn Vie and Hisashi Kashima (2019) "Knowledge Tracing
Machines: Factorization Machines for Knowledge
Tracing". Proceedings of the 33th AAAI Conference on Artificial
Intelligence.
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Impact on learning: modeling forgetting
Optimize scheduling of items in spaced repetition systems (∼ Anki)

Use knowledge tracing machines with extra features: counters of
attempts at skill level for different time windows in the past
EDM 2019 Benoît Choffin, Fabrice Popineau, Yolaine Bourda, and Jill-Jênn Vie

(2019) "DAS3H: Modeling Student Learning and Forgetting for
Optimally Scheduling Distributed Practice of Skills". Best Paper
Award.
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Deep Factorization Machines

Learn layers W (ℓ) and b(ℓ) such that:

a0(x) = (vuser, vitem, vskill, . . .)
a(ℓ+1)(x) = ReLU(W (ℓ)a(ℓ)(x) + b(ℓ)) ℓ = 0, . . . , L − 1
yDNN(x) = ReLU(W (L)a(L)(x) + b(L))

logit p(x) = yFM(x) + yDNN(x)

Jill-Jênn Vie (2018). “Deep Factorization Machines for Knowledge
Tracing”. In: The 13th Workshop on Innovative Use of NLP for
Building Educational Applications. url:
https://arxiv.org/abs/1805.00356

https://arxiv.org/abs/1805.00356
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Comparison

FM: yFM factorization machine with λ = 0.01
Deep: yDNN : multilayer perceptron
DeepFM: yDNN + yFM with shared embedding
Bayesian FM: wk , vkf ∼ N (µf , 1/λf )
µf ∼ N (0, 1), λf ∼ Γ(1, 1) (trained using Gibbs sampling)

Various types of side information
first: <discrete> (user, token, countries, etc.)
last: <discrete> + <continuous> (time + days)
pfa: <discrete> + wins + fails
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Duolingo dataset
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Results

Model d epoch train first last pfa

Bayesian FM 20 500/500 – 0.822 – –
Bayesian FM 20 500/500 – – 0.817 –

DeepFM 20 15/1000 0.872 0.814 – –
Bayesian FM 20 100/100 – – 0.813 –

FM 20 20/1000 0.874 0.811 – –
Bayesian FM 20 500/500 – – – 0.806

FM 20 21/1000 0.884 – – 0.805
FM 20 37/1000 0.885 – 0.8 –

DeepFM 20 77/1000 0.89 – 0.792 –
Deep 20 7/1000 0.826 0.791 – –
Deep 20 321/1000 0.826 – 0.79 –
LR 0 50/50 – – – 0.789
LR 0 50/50 – 0.783 – –
LR 0 50/50 – – 0.783 –
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Duolingo ranking

Rank Team Algo AUC

1 SanaLabs RNN + GBDT .857
2 singsound RNN .854
2 NYU GBDT .854
4 CECL LR + L1 (13M feat.) .843
5 TMU RNN .839

7 (off) JJV Bayesian FM .822
8 (off) JJV DeepFM .814

10 JJV DeepFM .809

15 Duolingo LR .771

Burr Settles, Chris Brust, Erin Gustafson, Masato Hagiwara, and
Nitin Madnani (2018). “Second language acquisition modeling”. In:
Proceedings of the Thirteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pp. 56–65. url:
http://sharedtask.duolingo.com

http://sharedtask.duolingo.com
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What ’bout recurrent neural networks?

Deep Knowledge Tracing: model the problem as sequence prediction

Each student on skill qt has performance at
How to predict outcomes y on every skill k?
Spoiler: by measuring the evolution of a latent state ht

Chris Piech et al. (2015). “Deep knowledge tracing”. In: Advances in
Neural Information Processing Systems (NIPS), pp. 505–513

Our approach: encoder-decoder{
ht = Encoder(ht−1, x in

t )
pt = Decoder(ht , xout

t ) t = 1, . . . , T
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Graphically: deep knowledge tracing
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Deep knowledge tracing with dynamic student classification

h0

q0, a0, c0 q1, a1, c1 q2, a2, c2

h1 h2 h3

y = y0 · · · yq1 · · · yM–1 y y = y0 · · · yM–1

ICDM 2018 Sein Minn, Yi Yu, Michel Desmarais, Feida Zhu, and Jill-Jênn Vie
(2018) "Deep Knowledge Tracing and Dynamic Student Classification
for Knowledge Tracing". Proceedings of the 18th IEEE International
Conference on Data Mining.
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DKT seen as encoder-decoder

h0

q0, a0 q1, a1 q2, a2
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yq1 = σ(⟨h1, vq1⟩) yq2 yq3
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Results on Fraction dataset

500 middle-school students, 20 Fraction subtraction questions,
8 skills (full matrix)

Model Encoder Decoder xout
t ACC AUC

Ours GRU d = 2 bias iswf 0.880 0.944
KTM counter bias iswf 0.853 0.918
PFA counter bias swf 0.854 0.917
Ours ∅ bias iswf 0.849 0.917
Ours GRU d = 50 ∅ 0.814 0.880
DKT GRU d = 2 d = 2 s 0.772 0.844
Ours GRU d = 2 ∅ 0.751 0.800
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Results on Berkeley dataset

562201 attempts of 1730 students over 234 CS-related items of 29
categories.

Model Encoder Decoder xout
t ACC AUC

Ours GRU d = 50 bias iswf 0.707 0.778
KTM counter bias iswf 0.704 0.775
Ours ∅ bias iswf 0.700 0.770
DKT GRU d = 50 d = 50 s 0.684 0.751
Ours GRU d = 100 ∅ 0.682 0.750
PFA counter bias swf 0.630 0.683
DKT GRU d = 2 d = 2 s 0.637 0.656

Jill-Jênn Vie and Hisashi Kashima (n.d.). “Encode & Decode: Generalizing
Deep Knowledge Tracing and Multidimensional Item Response Theory”.
under review. url: http://jiji.cat/bigdata/edm2019_submission.pdf

http://jiji.cat/bigdata/edm2019_submission.pdf
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Take home message

Factorization machines are a strong baseline for knowledge tracing
that take many models as special cases

Recurrent neural networks are powerful because they track the
evolution of the latent state (try simpler dynamic models?)

Deep factorization machines may require more data/tuning, but
neural collaborative filtering offer promising directions

Next step: use this model and optimize human learning
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Any suggestions are welcome!

Feel free to chat:

vie@jill-jenn.net

All code:

github.com/jilljenn/ktm

Do you have any questions?
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