

# Variational factorization machines for preference elicitation in large-scale recommender systems

---

Jill-Jênn Vie<sup>1</sup>   Tomas Rigaux<sup>1</sup>   Hisashi Kashima<sup>2</sup>

<sup>1</sup> Inria Saclay, SODA team

<sup>2</sup> Kyoto University



京都大学  
KYOTO UNIVERSITY

# Outline

## Preference elicitation

- Getting new info from new users is hard
- We need **side information** and to **model uncertainty**

## Factorization Machines (FMs)

- FMs are a generalization of latent factor models (Rendle, 2012)
- Used for both regression and classification
- Sometimes better than their deep counterparts

## In this paper

- Variational Factorization Machines
- Variational: Bayesian inference → optimization

# Recommender Systems as Matrix Completion

## Problem

- Every user rates few items (1 %)
- How to infer missing ratings?

## Example



|         |   |   |   |   |
|---------|---|---|---|---|
| Satoshi | ? | 5 | 2 | ? |
| Kasumi  | 4 | 1 | ? | 5 |
| Takeshi | 3 | 3 | 1 | 4 |
| Joy     | 5 | ? | 2 | ? |

# Recommender Systems as Matrix Completion

## Problem

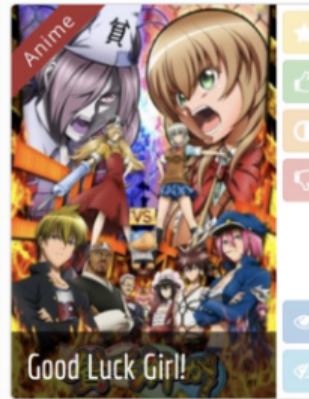
- Every user rates few items (1 %)
- How to infer missing ratings?

## Example

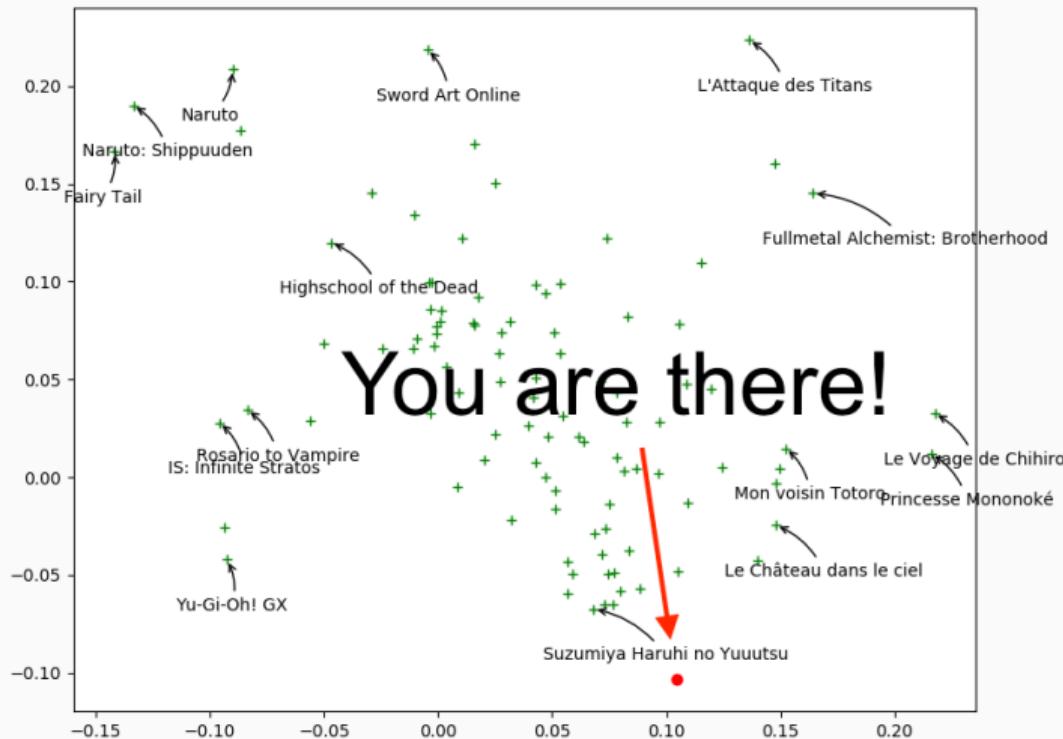


|         |   |   |   |   |
|---------|---|---|---|---|
| Satoshi | 3 | 5 | 2 | 2 |
| Kasumi  | 4 | 1 | 4 | 5 |
| Takeshi | 3 | 3 | 1 | 4 |
| Joy     | 5 | 2 | 2 | 5 |

# Preference Elicitation: select an informative batch of $K$ items



# Preference Elicitation: learn user embeddings in latent space



## Matrix factorization for collaborative filtering

Approximate  $R$  ratings  $n \times m$  by learning embeddings for user and item

$$\left. \begin{array}{l} U \text{ user embeddings } n \times d \\ V \text{ item embeddings } m \times d \end{array} \right\} \text{such that } R \simeq UV^T$$

### Fit

Learn  $U$  and  $V$  to minimize  $\|R - UV^T\|_2^2 + \lambda \cdot \text{regularization}$

### Predict: Will user $i$ like item $j$ ?

Just compute  $\langle \mathbf{u}_i, \mathbf{v}_j \rangle$

The actual model also contains bias terms for user  $i$  and item  $j$

$$r_{ij} = \mu + w_i^u + w_j^v + \langle \mathbf{u}_i, \mathbf{v}_j \rangle$$

## How to model side information?

If you know user  $i$  watched item  $j$  at the **cinema** (or on TV, or on smartphone), how to model it?

$r_{ij}$ : rating of user  $i$  on item  $j$

### Collaborative filtering

$$r_{ij} = w_{\text{user } i} + w_{\text{item } j} + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{item } j} \rangle$$

## How to model side information?

If you know user  $i$  watched item  $j$  at the **cinema** (or on TV, or on smartphone), how to model it?

$r_{ij}$ : rating of user  $i$  on item  $j$

### Collaborative filtering

$$r_{ij} = w_{\text{user } i} + w_{\text{item } j} + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{item } j} \rangle$$

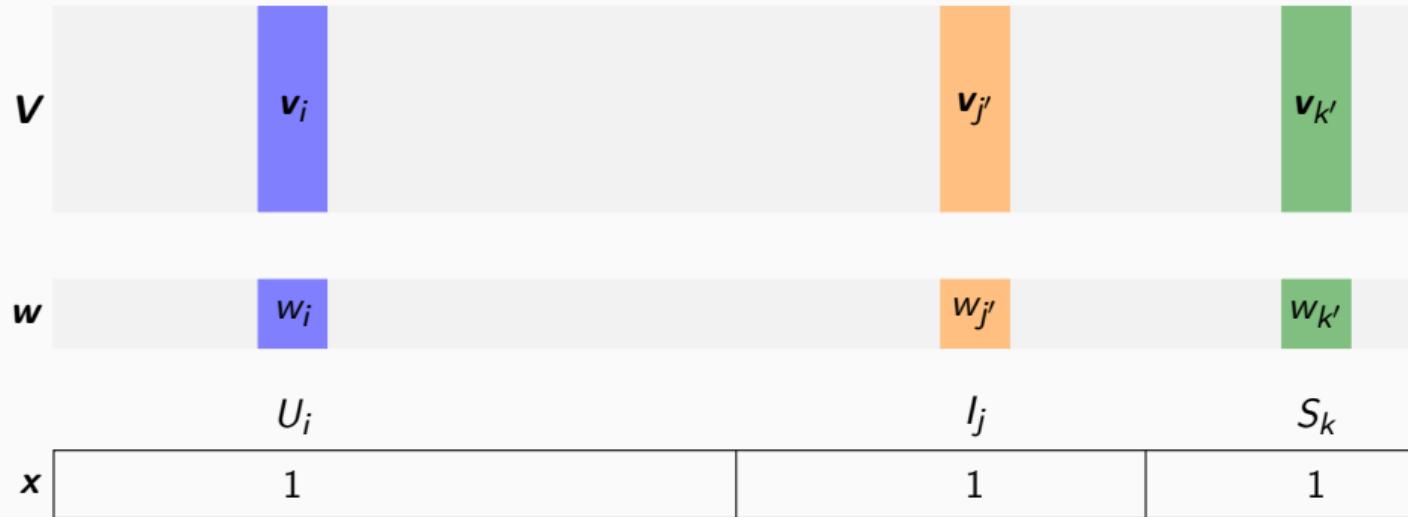
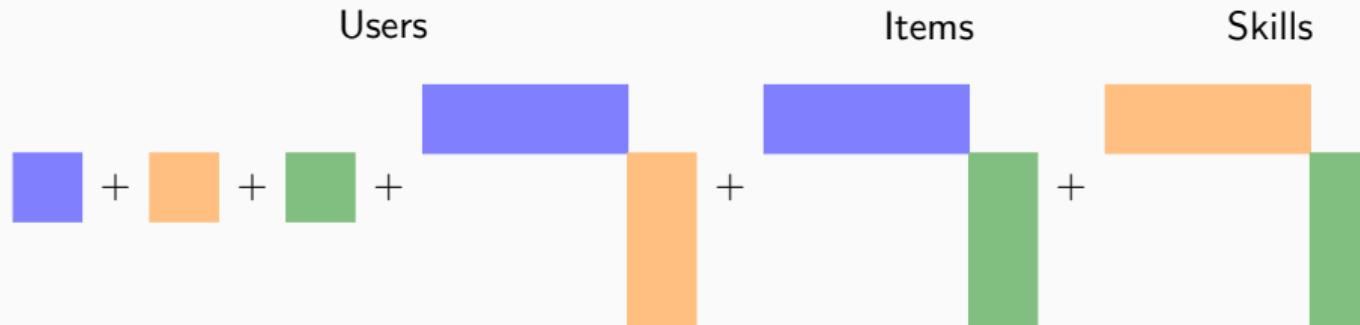
### With side information

$$r_{ij} = w_{\text{user } i} + w_{\text{item } j} + w_{\text{cinema}} + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{item } j} \rangle + \langle \mathbf{v}_{\text{user } i}, \mathbf{v}_{\text{cinema}} \rangle + \langle \mathbf{v}_{\text{item } j}, \mathbf{v}_{\text{cinema}} \rangle$$

## Encoding the problem using sparse features

| Users |       |       | Items |       |       |       | Formats |    |        |
|-------|-------|-------|-------|-------|-------|-------|---------|----|--------|
| $U_1$ | $U_2$ | $U_3$ | $I_1$ | $I_2$ | $I_3$ | $I_4$ | cinema  | TV | mobile |
| 0     | 1     | 0     | 0     | 1     | 0     | 0     | 0       | 1  | 0      |
| 0     | 0     | 1     | 0     | 0     | 1     | 0     | 0       | 1  | 0      |
| 0     | 1     | 0     | 0     | 0     | 1     | 0     | 1       | 0  | 0      |
| 0     | 1     | 0     | 0     | 1     | 0     | 0     | 1       | 0  | 0      |
| 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0       | 1  | 0      |

## Graphically: factorization machines



## Formally: factorization machines

Learn bias  $w_k$  and embedding  $v_k$  for each feature  $k$  such that:

$$y(\mathbf{x}) = \mu + \underbrace{\sum_{k=1}^K w_k x_k}_{\text{linear regression}} + \underbrace{\sum_{1 \leq k < l \leq K} x_k x_l \langle v_k, v_l \rangle}_{\text{pairwise interactions}}$$

This model is for regression

If classification, use a link function like softmax/sigmoid or Gaussian CDF

Steffen Rendle. "Factorization Machines with libFM". In: *ACM Transactions on Intelligent Systems and Technology (TIST)* 3.3 (2012), 57:1–57:22. DOI: 10.1145/2168752.2168771

## Training using, for example, SGD

Take a batch  $(\mathbf{X}_B, y_B)$  and update the parameters such that the error is minimized.

- Loss in classification: cross-entropy
- Loss in regression: squared error

---

### Algorithm 1 SGD

---

```
for batch  $\mathbf{X}_B, y_B$  do
    for  $k$  feature involved in this batch  $\mathbf{X}_B$  do
        Update  $w_k, v_k$  to decrease loss estimate  $\mathcal{L}$  on  $\mathbf{X}_B$ 
    end for
end for
```

---

## Why do we prefer distributions over point estimates?

- Because we can measure **uncertainty**
- More robust for critical applications
- Can guide sequential estimation (preference elicitation)

## Variational inference

Approximate true posterior with an easier distribution (Gaussian)

Idea: increase the ELBO  $\Rightarrow$  increase the objective

$$\begin{aligned}\log p(\mathbf{y}) &\geq \sum_{i=1}^N \underbrace{\mathbb{E}_{q(\theta)}[\log p(y_i|x_i, \theta)] - \text{KL}(q(\theta)||p(\theta))}_{\text{Evidence Lower Bound (ELBO)}} \\ &= \sum_{i=1}^N \mathbb{E}_{q(\theta)}[\log p(y_i|x_i, \theta)] - \text{KL}(q(w_0)||p(w_0)) - \sum_{k=1}^K \text{KL}(q(\theta_k)||p(\theta_k))\end{aligned}$$

Needs to be rescaled for mini-batching (see in the paper)

## Variational inference

$$\text{Priors } p(w_k) = \mathcal{N}(\nu_{g(k)}^w, 1/\lambda_{g(k)}^w) \quad p(v_{kf}) = \mathcal{N}(\nu_{g(k)}^{v,f}, 1/\lambda_{g(k)}^{v,f})$$

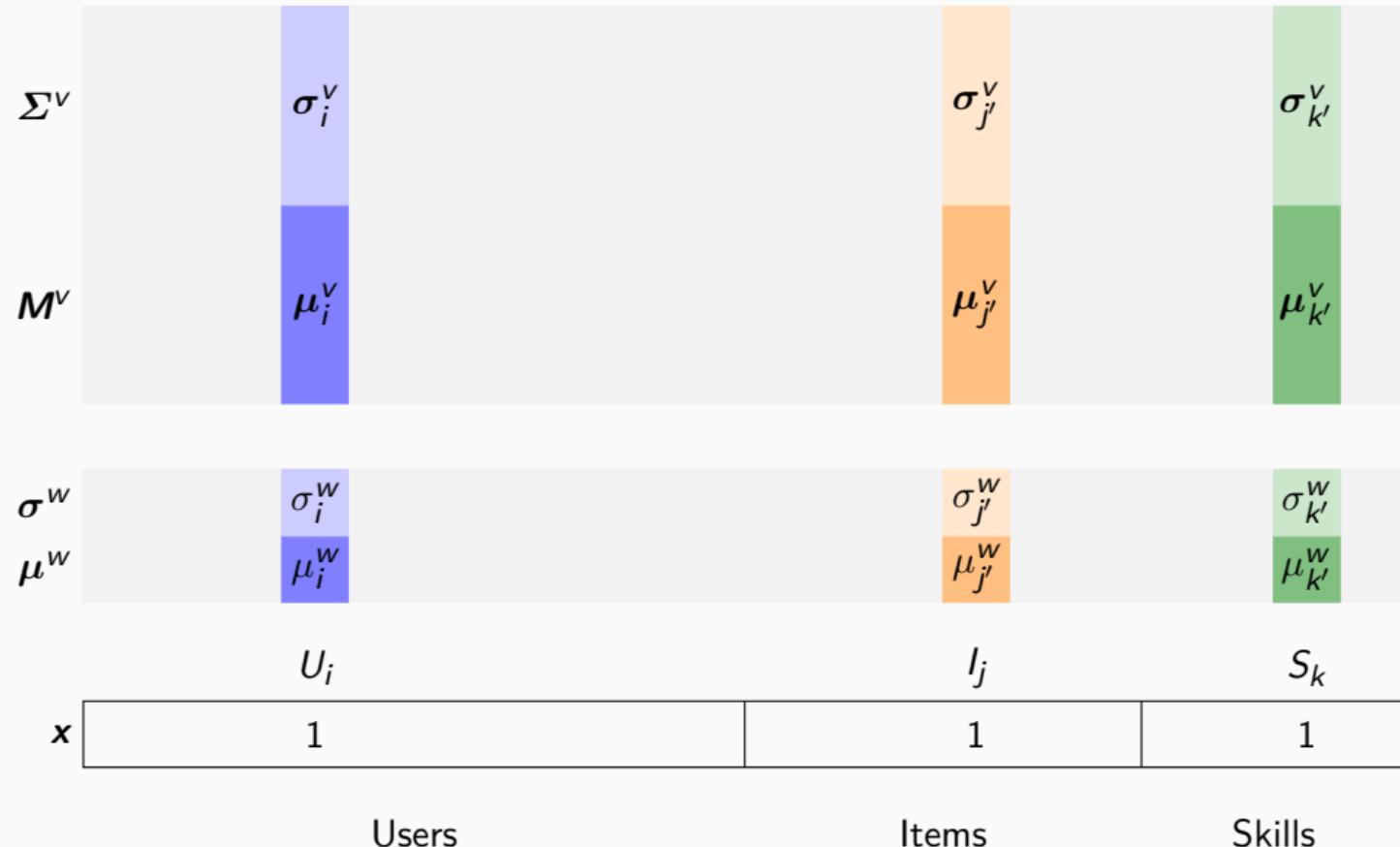
$$\text{Approx. posteriors } q(w_k) = \mathcal{N}(\mu_k^w, (\sigma_k^w)^2) \quad q(v_{kf}) = \mathcal{N}(\mu_k^{v,f}, (\sigma_k^{v,f})^2)$$

Idea: increase the ELBO  $\Rightarrow$  increase the objective

$$\begin{aligned} \log p(\mathbf{y}) &\geq \underbrace{\sum_{i=1}^N \mathbb{E}_{q(\theta)}[\log p(y_i|x_i, \theta)] - \text{KL}(q(\theta)||p(\theta))}_{\text{Evidence Lower Bound (ELBO)}} \\ &= \sum_{i=1}^N \mathbb{E}_{q(\theta)}[\log p(y_i|x_i, \theta)] - \text{KL}(q(w_0)||p(w_0)) - \sum_{k=1}^K \text{KL}(q(\theta_k)||p(\theta_k)) \end{aligned}$$

Needs to be rescaled for mini-batching (see in the paper)

## Graphically: Variational Factorization Machines



## VFM training

---

**Algorithm 2** Variational Training (SGVB) of FMs

---

```
for each batch  $B \subseteq \{1, \dots, N\}$  do
    Sample  $w_0 \sim q(w_0)$ 
    for  $k \in F(B)$  feature involved in batch  $B$  do
        Sample  $S$  times  $w_k \sim q(w_k)$ ,  $\mathbf{v}_k \sim q(\mathbf{v}_k)$ 
    end for
    for  $k \in F(B)$  feature involved in batch  $B$  do
        Update parameters  $\mu_k^w, \sigma_k^w, \mu_k^\nu, \sigma_k^\nu$  to increase ELBO estimate
    end for
    Update hyper-parameters  $\mu_0, \sigma_0, \nu, \lambda, \alpha$ 
    Keep a moving average of the parameters to compute mean predictions
end for
```

---

Then  $\sigma$  can be reused for preference elicitation (see how in the paper)

## Stochastic weight averaging

A beneficial regularization: keep all weights over training epochs and average them.

Connections to Polyak-Ruppert averaging, aka stochastic weight averaging

## Experiments on real data

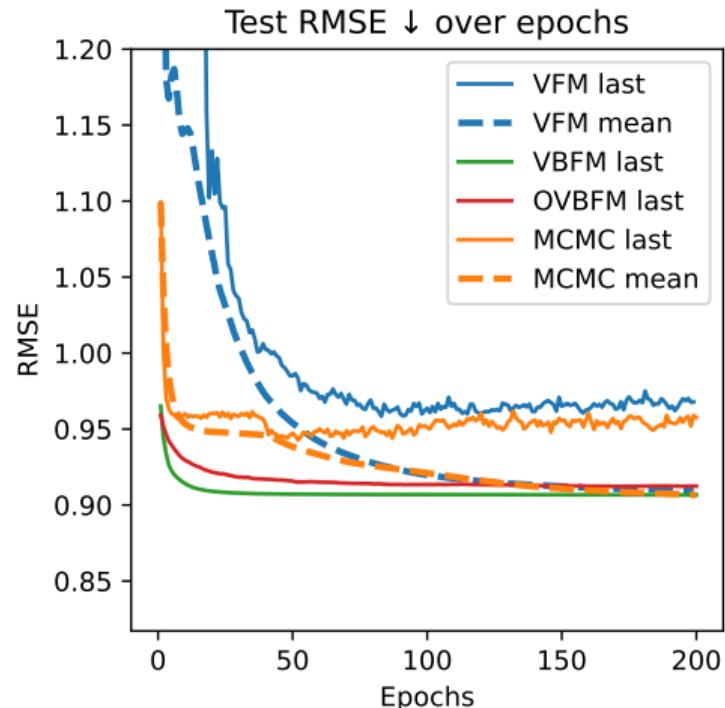
| Task           | Dataset   | #users | #items | #entries | Sparsity |
|----------------|-----------|--------|--------|----------|----------|
| Regression     | movie100k | 944    | 1683   | 100000   | 0.937    |
|                | movie1M   | 6041   | 3707   | 1000209  | 0.955    |
| Classification | movie100  | 100    | 100    | 10000    | 0        |
|                | movie100k | 944    | 1683   | 100000   | 0.937    |
|                | movie1M   | 6041   | 3707   | 1000209  | 0.955    |
|                | Duolingo  | 1213   | 2416   | 1199732  | 0.828    |

## Models

- The proposed approach VFM
- libFM MCMC implementation
- We found another preprint VBFM [2] only for regression

## Results on regression

| RMSE       | Movie100k    | Movie1M      |
|------------|--------------|--------------|
| MCMC       | <b>0.906</b> | <b>0.840</b> |
| <b>VFM</b> | <b>0.906</b> | 0.854        |
| VBFM       | 0.907        | 0.856        |
| OVBFM      | 0.912        | 0.846        |

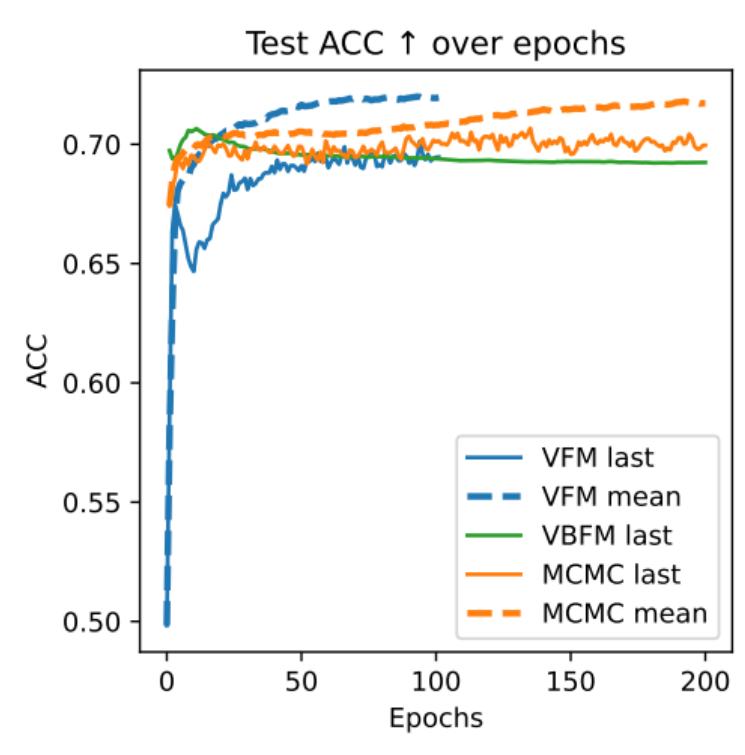


OVBFM is online (batch size = 1) of VBFM

## Results on classification

| ACC        | Movie100k    | Movie1M      | Duolingo     |
|------------|--------------|--------------|--------------|
| MCMC       | 0.717        | 0.739        | <b>0.848</b> |
| <b>VFM</b> | <b>0.722</b> | <b>0.746</b> | 0.846        |
| VBFM       | 0.692        | 0.732        | 0.842        |

In the paper, we also report AUC and mean average precision.



## Conclusion

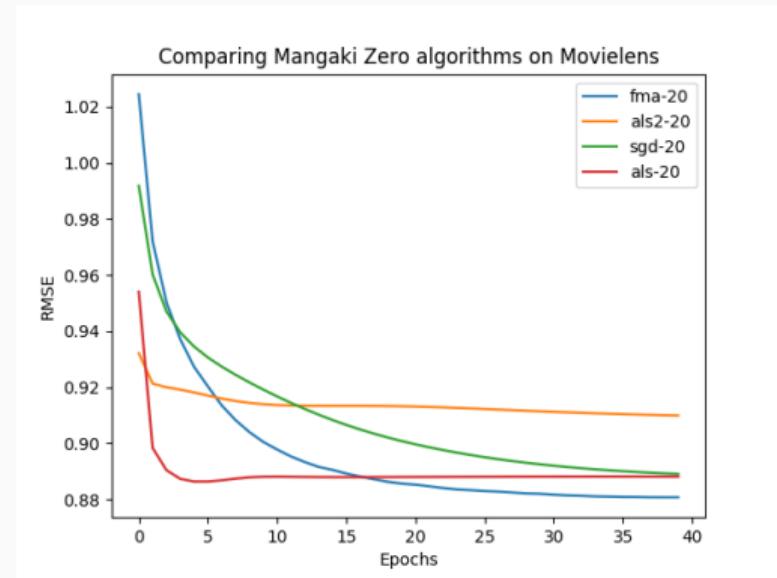
- FMs are a strong baseline
- In this paper we present a variational approach for learning them
  - so that we can deal with uncertainty
- Our method is batched so suitable for large-scale datasets
- We have better performance on some (not all) classification datasets; perhaps due to Adam optimizer or stochastic weight averaging (beneficial regularization)

# Thanks for listening!

VFM is implemented in TF & PyTorch

$\mathbb{E}_{q(\theta)}[\log p(y_i | \mathbf{x}_i, \theta)]$  becomes  
outputs.log\_prob(observed).mean()  
Same implementation for classification  
and regression: the only difference in the  
distribution (Bernoulli vs. Gaussian)

Feel free to try it on GitHub (vfm.py):  
[github.com/jilljenn/vae](https://github.com/jilljenn/vae)



See more benchmarks on  
[github.com/mangaki/zero](https://github.com/mangaki/zero)

- [1] Steffen Rendle. “Factorization Machines with libFM”. In: *ACM Transactions on Intelligent Systems and Technology (TIST)* 3.3 (2012), 57:1–57:22. DOI: 10.1145/2168752.2168771.
- [2] Avijit Saha et al. “Scalable Variational Bayesian Factorization Machine”. 2017.