
Variational factorization machines for preference elicitation in
large-scale recommender systems

Jill-Jênn Vie1 Tomas Rigaux1 Hisashi Kashima2
1 Inria Saclay, SODA team
2 Kyoto University

1



Outline

Preference elicitation
• Getting new info from new users is hard
• We need side information and to model uncertainty

Factorization Machines (FMs)
• FMs are a generalization of latent factor models (Rendle, 2012)
• Used for both regression and classification
• Sometimes better than their deep counterparts

In this paper
• Variational Factorization Machines
• Variational: Bayesian inference → optimization
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Recommender Systems as Matrix Completion

Problem
• Every user rates few items (1 %)
• How to infer missing ratings?

Example

Satoshi ? 5 2 ?
Kasumi 4 1 ? 5
Takeshi 3 3 1 4

Joy 5 ? 2 ? 3
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Preference Elicitation: select an informative batch of K items
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Preference Elicitation: learn user embeddings in latent space
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Matrix factorization for collaborative filtering

Approximate R ratings n × m by learning embeddings for user and item

U user embeddings n × d
V item embeddings m × d

}
such that R ≃ UV T

Fit
Learn U and V to minimize ||R − UV T ||22 + λ · regularization

Predict: Will user i like item j?
Just compute ⟨ui , vj⟩

The actual model also contains bias terms for user i and item j

rij = µ + wu
i + wv

j + ⟨ui , vj⟩
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How to model side information?

If you know user i watched item j at the cinema (or on TV, or on smartphone), how to
model it?

rij : rating of user i on item j

Collaborative filtering

rij = wuser i + witem j + ⟨vuser i , vitem j⟩

With side information

rij = wuser i + witem j + wcinema + ⟨vuser i , vitem j⟩ + ⟨vuser i , vcinema⟩ + ⟨vitem j , vcinema⟩
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Encoding the problem using sparse features

Users Items Formats

U1 U2 U3 I1 I2 I3 I4 cinema TV mobile

0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 1 0 1 0
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Graphically: factorization machines
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Formally: factorization machines

Learn bias wk and embedding vk for each feature k such that:

y(x) = µ +
K∑

k=1
wkxk︸ ︷︷ ︸

linear regression

+
∑

1≤k<l≤K
xkxl⟨vk , vl ⟩︸ ︷︷ ︸

pairwise interactions

This model is for regression
If classification, use a link function like softmax/sigmoid or Gaussian CDF

Steffen Rendle. “Factorization Machines with libFM”. In: ACM Transactions on Intelligent
Systems and Technology (TIST) 3.3 (2012), 57:1–57:22. doi: 10.1145/2168752.2168771
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Training using, for example, SGD

Take a batch (XB, yB) and update the parameters such that the error is minimized.

• Loss in classification: cross-entropy
• Loss in regression: squared error

Algorithm 1 SGD
for batch XB, yB do

for k feature involved in this batch XB do
Update wk , vk to decrease loss estimate L on XB

end for
end for
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Why do we prefer distributions over point estimates?

• Because we can measure uncertainty
• More robust for critical applications
• Can guide sequential estimation (preference elicitation)
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Variational inference

Approximate true posterior with an easier distribution (Gaussian)

Idea: increase the ELBO ⇒ increase the objective

log p(y) ≥
N∑

i=1
Eq(θ)[log p(yi |xi , θ)] − KL(q(θ)||p(θ))︸ ︷︷ ︸

Evidence Lower Bound (ELBO)

=
N∑

i=1
Eq(θ)[log p(yi |xi , θ)] − KL(q(w0)||p(w0)) −

K∑
k=1

KL(q(θk)||p(θk))

Needs to be rescaled for mini-batching (see in the paper)
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Variational inference

Priors p(wk) = N (νw
g(k), 1/λw

g(k)) p(vkf ) = N (νv ,f
g(k), 1/λv ,f

g(k))
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k , (σw
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k , (σv ,f
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Graphically: Variational Factorization Machines
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VFM training

Algorithm 2 Variational Training (SGVB) of FMs
for each batch B ⊆ {1, . . . , N} do

Sample w0 ∼ q(w0)
for k ∈ F (B) feature involved in batch B do

Sample S times wk ∼ q(wk), vk ∼ q(vk)
end for
for k ∈ F (B) feature involved in batch B do

Update parameters µw
k , σw

k , µv
k , σv

k to increase ELBO estimate
end for
Update hyper-parameters µ0, σ0, ν, λ, α

Keep a moving average of the parameters to compute mean predictions
end for

Then σ can be reused for preference elicitation (see how in the paper) 16



Stochastic weight averaging

A beneficial regularization: keep all weights over training epochs and average them.

Connections to Polyak-Ruppert averaging, aka stochastic weight averaging
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Experiments on real data

Task Dataset #users #items #entries Sparsity

Regression movie100k 944 1683 100000 0.937
movie1M 6041 3707 1000209 0.955

Classification movie100 100 100 10000 0
movie100k 944 1683 100000 0.937
movie1M 6041 3707 1000209 0.955
Duolingo 1213 2416 1199732 0.828

Models
• The proposed approach VFM
• libFM MCMC implementation
• We found another preprint VBFM [2] only for regression
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Results on regression

RMSE Movie100k Movie1M

MCMC 0.906 0.840
VFM 0.906 0.854
VBFM 0.907 0.856

OVBFM 0.912 0.846

OVBFM is online (batch size = 1) of VBFM
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Results on classification

ACC Movie100k Movie1M Duolingo

MCMC 0.717 0.739 0.848
VFM 0.722 0.746 0.846
VBFM 0.692 0.732 0.842

In the paper, we also report AUC and mean
average precision.
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Conclusion

• FMs are a strong baseline
• In this paper we present a variational approach for learning them

• so that we can deal with u n c e r t a i n t y
• Our method is batched so suitable for large-scale datasets
• We have better performance on some (not all) classification datasets; perhaps due

to Adam optimizer or stochastic weight averaging (beneficial regularization)
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Thanks for listening!

VFM is implemented in TF & PyTorch

Eq(θ)[log p(yi |xi , θ)] becomes
outputs.log_prob(observed).mean()
Same implementation for classification
and regression: the only difference in the
distribution (Bernoulli vs. Gaussian)

Feel free to try it on GitHub (vfm.py):
github.com/jilljenn/vae See more benchmarks on

github.com/mangaki/zero
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